

Paper 1 examination-style questions

Chapter 1

1	a)			llowing	g binar	y num	nber in	ito der	nary (b	pase 10):	[1]
	b)	0 0 1 1 Conver		llowing	g dena	ıry (ba	se 10)	numb	er into	o binary:	[1]
		70									[1]
	c)		, ,	es are f	there i	n the t	follow	ing me	emory	sizes (give your answer as a	
		power of 1 KB	OT Z)?								
		ii 1GB									[2]
	d)			iming	device	is mic	roprod	essor-	contro	olled. The device uses the	
		24-hou		ters Δ	and F	R are i	ised to	o renre	esent t	the number of hours and the	2
			r of mir		ana L	, are t	asca ti	э терг	JCIIC (the number of flours and the	
		i Repre	sent 19	:54 us	ing the	e two	registe	ers.			[2]
		A				В					
		la avusa					utaa				
		hours Anothe	r 8-bit ı	eaiste	r. C. is		^{utes} to repi	resent	the nu	umber of seconds.	
			resent 2	_							
		C			1					1	
				_						1 1 0 0, register B automatic	ally
			ster A a	-			_		cries ti	ne value 0 0 1 1 1 1 0 0,	
		iii Wh			-			-	isters k	pelow?	[2]
		А				T -	T .			1	
		0	0	0	1	0	1	1	0		
		В						ı	ı	1	
		0	0	1	1	1	0	1	1		
		C								1	
		0	0	1	1	1	0	1	1		
		iv Sho					_				[2]
	e)	i Conv							-	/. I notation.	[2] [2]
	f)									used in computers.	[3]
0 2	a)	Describ	e what	is mea	nt by a	a MAC	addr	ess In	clude	in your answer the meaning	
	u,	of the			-					in your answer the meaning	[3]
	b)				e betv	veen L	JAA ar	nd LAA	A MAC	addresses? Explain why	F 43
	c)	both ty What is	pes are		ΔςζΙΙ	code?					[4]
	-/		he ASC	-			textbo	ook, sł	now h	ow:	
			eacher_								F 43
		would	be repre	esente	a in As	CII us	ing he	xadec	ımal c	odes from the table.	[4]

[3]

[1]

Chapter 2

- **a)** What is meant by the terms:
 - i simplex data transmission
 - ii full-duplex data transmission? [2]
- **b)** Describe the difference between synchronous and asynchronous data transmission.
- c) Explain the difference between an IP address and a MAC address. [3]
- 4 a) The first byte has even parity and the second byte has odd parity. Supply the missing parity bit in each case.

1							
	0	1	1	1	1	0	1
ii							
	1	1	Λ	1	1	Λ	Λ

- b) Describe two other methods which can be used to check for errors following data transmission.
- c) A system uses even parity. Seven bytes were transmitted together with a parity byte. The bytes arrive at their destination as shown in Table 2.1.

 One of the bits has been altered during the transmission stage. Find the erroneous bit and identify which byte has been corrupted. Explain how you arrived at your answer. Write down the correct value of the byte before corruption.

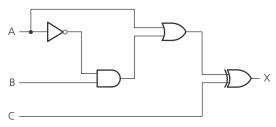

 [4]

Table 2.1

	parity bit	bit 2	bit 3	bit 4	bit 5	bit 6	bit 7	bit8
byte 1	0	1	0	1	0	0	0	0
byte 2	1	1	0	1	1	0	1	1
byte 3	1	0	1	1	1	0	1	0
byte 4	1	0	1	0	0	0	1	1
byte 5	0	1	1	1	0	1	0	0
byte 6	0	0	0	0	1	0	1	0
byte 7	1	1	1	0	0	0	0	1
parity byte	0	0	0	0	1	1	1	1

Chapter 3

5 a) Complete a truth table for the following logic circuit: [4]

- b) Produce a logic circuit to represent the following logic statement:
 - X = 1 if (A = 1 OR B = NOT 1) OR (C = 1 AND B = 1) $X = (A + B) + (C \cdot B)$

c) A chemical experiment is being monitored by three devices which send binary values 0 or 1 to a logic circuit. The conditions being monitored and binary values

values 0 or 1 to a logic circuit. The conditions being monitored and binary values produced are shown in Table 3.1.

[4]

Table 3.1

Parameter	Description	Binary value	Conditions
т	tomporaturo	0	temperature < 95°C
1	temperature	1	temperature >= 95 °C
^	mll (a siditu)	0	pH > 10
Α	pH (acidity)	1	pH <= 10
c	stirrer speed	0	rotation > 800 rpm
S	stirrer speed	1	rotation <= 800 rpm

An error, X, is output from the logic circuit if: either: temperature >= 95 °C AND pH <= 10 or: pH > 10 AND stirrer speed <= 800 rpm or: temperature < 95 °C AND stirrer speed > 800 rpm

Produce a logic circuit and truth table to represent the above system. [10]

Chapter 4

- **a**) Give **three** features of a typical operating system. [3]
- **b)** Explain the two terms:
 - i buffer ii interrupt.
- c) Describe how buffers and interrupts are used when a document is sent to be printed. [4]
- 7 a) Describe the structure of the von Neumann model. [3]
- b) The part contents of the memory of a computer are shown in Table 4.1.

Table 4.1

Address	Contents
10000000	11110000
1000001	01110011
1000010	11110011
1000011	00001110
10000100	00111100
10111110	
1011111	
11000000	

- i The WRITE operation is carried out on location: 1 0 0 0 0 1 0. What are the contents of MAR and MDR?
- ii Value 0 1 1 0 0 1 1 1 is to be written into location 1 0 1 1 1 1 1 1. What are the contents of MDR and MAR? Also show the updated memory contents.

c) Put the following fetch–execute cycle stages into their correct sequence.

- 1 address is then copied from PC to MAR using the address bus
- 2 contents of MDR are copied and placed into the CIR
- 3 contents of memory location in MAR are copied temporarily into MDR
- 4 instruction is finally decoded and executed by sending signals to components in the computer system
- **5** PC contains the address of the memory location of next instruction to be fetched
- 6 value in PC is incremented by 1 so it now points to the next instruction to be fetched [6]

[5]

[2]

Chapter 5

	8	a)	Name two input and two output devices used at a point-of-sale terminal (checkout) at a supermarket. Give a reason for your choice in each case.	[4]
		b)	Describe the operation of a barcode reader. What are the advantages to customers of supermarkets using barcode technology?	[6]
•			Barcodes are made up of alternate dark and light lines. Describe how the computer can interpret these lines.	[4]
		d)	Explain how barcodes are used in automatic stock control systems.	[4]
	9		What are QR codes? Describe how 2D/3D scanners are used as part of the security system at an airport.	[2] [4]
		c)	Describe the differences between <i>voice recognition</i> and <i>speech recognition</i> systems.	[4]
	10	a)	Name suitable sensors for:	
			 i monitoring the environment in a greenhouse ii monitoring for intruders in a burglar alarm system. 	[3]
			Explain the main differences between <i>monitoring</i> and <i>control</i> with reference to sensors and microprocessors. Describe how sensors and a microprocessor are used to monitor for intruders	[3]
		۲,	in a burglar alarm system. Consider all the inputs and outputs in the system.	[6]
•	11		Give two applications of 3D printers. Describe the differences between 3D printers and inkjet printers.	[2] [3]
		c)	Describe how a blueprint design is made into a solid object using a 3D printer.	[4]
C	ha	ıp'	ter 6	
		a)		
			format?	[1]
		b)	ii How many MP3 files (assuming they are all the same size as calculated in part i) could be stored on a CD with a capacity of 800 MB?i MP3 is an example of lossy file compression. Explain the terms:	[2]
		υ,	lossy file compression lossless file compression.	
		c)	ii Explain why a jpeg file will lose its sharpness if enlarged too much. Explain why MP3 files retain music quality even though their file size is only 10% the original file size.	[4] of [3]
	13	a)	Explain the differences between RAM and ROM memories.	
		L)	Give a use for each type of memory in a computer system.	[4]
		D)	Describe the advantages of using solid state memories rather than hard disk drives.	[4]
		c)	Compare the technology that underpins DVDs, Blu-ray™ disks and DVD-RAM.	[6]
C	ha	ıp'	ter 7	
	14		e the words below to complete the following sentences.	
			sembler compiler interpreter translate a program written in a high-level language, you can use a/an	
			a/an To translate a program written in a nign-level language, you can use a/an a/an To translate a program written in a low-level language you mus	
			e a/an	[3]

15			
Pro	ogram A	Program B	
BE	GIN	INP	
	VAR First, Second: INTEGER	STA FIRST	
	READ First, Second	INP	
	First:= First + Second	STA SECOND	
ודאידו	WRITE First	LDA FIRST	
EN	D	ADD SECOND STA FIRST	
		OUT	
		FIRST DAT	
		SECOND DAT	
	a) Which program is easier to understand?		[1]
	b) Why is it easier to understand?		[1]
	c) Which program is written in a high-level langu	iage?	[1]
1 6	Give three advantages of writing a program in a using a low-level language.	high-level language rather than	[3]
17	Give three advantages of writing a program in a using a high-level language.	low-level language rather than	[3]
18	Explain what a <i>compiler</i> does and what an <i>interp</i> include a description of the differences between		[2]
1 9	Choose which type of translator you would use to high-level programming language. Give three rea		[4]
20	Look at these two pieces of code:		
Α			
	CLC		
	LDX #0 LDA #0		
loon	ol: ADC B,X		
TOOP	STA C		
	INX		
	CPX #A		
	BNE loop1		
В			
	Sum = 0		
	FOR Counter = 1 TO 10 INPUT Number		
	Sum = Sum + Number		
	NEXT		
	PRINT Sum		
	a) Which of these pieces of code is written in a h	nigh-level language?	[1]
	b) Discuss the benefits of writing code in a high-	level language or a low-level	
	language.		[2]
	c) There are two types of translator used with his Name each type of translator and describe tw		[4]
Cha	ipter 8		
_	a) Name three security issues when using the in-	ternet and explain ways to	
2	overcome these issues.	cerner and explain ways to	[6]
	b) i Describe two ways to guard against accide	ental data loss.]
	ii Firewalls are used to protect a user's compl		
	out by a firewall.		[5]
	c) Describe what happens when a user logs on to a	website which uses SSL protocols.	[5]

[6]

22 a) i What is meant by encryption?
ii What is meant by:
 freeware
 shareware? [4]
b) i What is meant by asymmetric encryption?
 ii What is the benefit of using a 128-bit key rather than a 32-bit key? [3]
c) Explain, with examples, the following terms:
 i digital signatures

ii biometrics.